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A transformed linear approximation is a function of the form w(x) r/>(L(A, x)),
where L(A, .) is an element of an n-dimensional linear space. Best Chebyshev
approximations are characterized when r/> is an order function. Computation
of a best approximation on an n + 1 point set is considered. A variant of Stiefel's
exchange (ascent) method is proposed for computation of best approximations
on finite sets. It is shown that Stiefel's exchange increases the deviation under
favorable circumstances. Best approximations on infinite sets can be obtained
by discretization.

Let W be a compact Hausdorff space. Let {tPl ,... , tPn} be a linearly indepen­
dent subset of C(W) and define

n

L(A, x) = I aktPk(X)'
k~l

Let w be an element of C(W). Let ~ be a continuous mapping of the real line
into the extended real line. Define

F(A, x) = w(x) ~(L(A, x)).

Such an approximation is called a transformed linear approximation. Let f
be given: f(x) = w(x) g(x), g E C(W). The approximation problem is to find
A * to minimize

e(A) = sup{[ f(x) - F(A, x)1 : x E W}.

Such a parameter A * is called best and F(A *, .) is called a best approximation
to!

The existence, characterization, and uniqueness problems were considered
in a preceding paper [3] under the assumption that w > O. Approximation
with respect to a continuous multiplicative weight function can be handled by
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building the weight function into w. To avoid trivialities, it is assumed that an
approximant with finite norm exists.

PRELIMINARIES

DEFINITION. We call ep, a continuous mapping from the real line into
the extended real line, an order function if ep is monotonic and is strictly
monotonic where it is finite.

Some order functions are:

(i) ep( y) = exp( y)

(ii) ep(y) = log(y)
= -00

y>O
y ~O.

Others are given in [3]. If ep is not an order function, very little of the theory
of this paper can be used.

Let S(W) = {x : w(x) eF 0, X E W}.

VANISHING W

In [3], it was assumed that w > O. As there exist cases of practical interest
in which this is not the case [6], it appears necessary to widen the theory of
that paper.

Let M(A) = {x : i f(x) - F(A, x)i = e(A)}. M(A) is a nonempty closed set.

THEOREM 1. Let 0 < e(A) < 00. Let ep be an order function. A necessary
and sufficient condition for A to be best is that no B exist such that

IV(X) L(B, x)(f(x) - F(A, x)) > 0 X E M(A).

This is proven using the arguments of [3, Theorem 2], noting that multi­
plication by w preserves betweenness.

Let </J(x) = (If!l(X), ... , If!n(x)).

COROLLARY. Let e(A) < 00 and ep be an order function. A necessary and
sufficient condition that A be best is that 0 be in the convex hull of

{(f(x) - F(A, x)) </J(x) w(x) : x E M(A)}.

Reference [3, Lemmas 4, 5, 6, Theorem 3 and its corollary] applies.

THEOREM 2. Let ep be an order function. A sufficient condition for best A
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with finite error to be uniquely best on W is that {fl ,... , !f;n} is a Chebyshev
set on SeW).

BEST ApPROXIMATION ON n + 1 POINTS SETS

We consider how to obtain the best approximation on a n + 1 point
subset Y = {xo ,•.. , xn} of S( W) if {!f;l ,... , !f;n} is a Chebyshev set on the n + 1
point set Yand ep is an order function. By the corollary to Theorem 1, A is
best if {(f(x) - F(A, x» <P(x) w(x), x E Y} contains °in its convex hull and
If(x) - F(A, x)1 is constant on Y. We now show how to find A.

(I) Find a nontrivial solution (Ao ,... , An) to

n

L .\;<P(xi) sgn(w(xi» = 0.
i~O

One way to do this is to set Ao = 1 and solve

n

L Ai<P(Xi) = -<P(xo)·
i=l

This is a linear system of n equations in n unknowns. By the Chebyshev set
assumption the matrix is nonsingular and a solution exists. None of the ,\'s
obtained could be zero, since then the Chebyshev set assumption would be
violated.

(2) Solve the (nonlinear) system

f(x;) - w(x;) ep(L(A, Xi» - sgn(A i ) d = ° i = O,...,n

for unknowns a1 , ••• , an , d. The system can be rewritten as

L(A, x;) - ep-l[(f(Xi ) - sgn(Ai ) d)/W(Xi)] = ° i = 0,... , n.

Either system may be solved by Newton's method.
A solution to the latter is a solution to the former. Let us suppose that the

former has two solutions (A, d) and (B, e), then we have

ep(L(A, Xi» - 4>(L(B, Xi» = sgn(Ai)(e - d)/W(Xi)' i = 0,... , n.

If e = d, then F(A, .), F(B, .) are unbounded or A = B by the Chebyshev set
assumption. Assume, therefore, that e 7":- d. Assume without loss of gene­
rality that 4> is monotonic increasing, then for i =, 0, ... , n

sgn(L(A, Xi) - L(B, Xi» = sgn(L(A - B, Xi» = sgn(A i ) W(Xi)(e - d).
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This violates choice of {;\,J and the theorem on linear inequalities [I, p. 19].
Hence a solution to the former is unique.

If the latter nonlinear equation is solved by Newton's method, the ith
row of the (n -+ 1) x (n + J) matrix 1\1 of partial derivatives is given by

j = l, ... ,n

mi.n+l = sgn(Ai)[(1>-I)' «(f(Xi) - sgn(Ai) d)/w(xi))]/w(xi) = YJi(d).

THEOREM 3. Let N = {t : I 1>(t) I < oo} and 1>-1 have a positive continuous
derivative on N. Let 1> be an order function and {if;1 ,... , if;n} be a Chebyshev set
on {xo ,... , x n}. The above matrix of partial derivatives is nonsingular in a
neighborhood of the solution.

Proof It follows that if the matrix is singular, there exists {b1 ,... , bn+l}
not all zero such that

L(B, Xi) + YJi(d) bn+l = ° i = 0,... , n.

By the Chebyshev set assumption, bn+l cannot be zero. Assume without loss
of generality that bn+l < 0, then

sgn(L(B, Xi)) = sgn(Aiw(xi)) i = 0,... , n.

But by choice of {Aj } and the theorem on linear inequalities [1, p. 19], this is
impossible.

Remark. If the derivative is negative on N, the theorem also holds.

ERROR DETERMINING SETS

For Ya compact subset of W define

II g Ily = sUPfl g(x)1 : X E Y}, p(Y) = inf {Ilf - F(A, -)Iy : A E En}·

It is a consequence of the corollary to Theorem 1 and the theorem of
Caratheodory (1, p. 17], that

THEOREM 4. Let there exist a best approximation on Wand 1> be an order
function. There exists an n -+ 1 point subset T of W such that p(W) = p(T)
and any best approximation to f on W is best on T.

A best approximation on finite W can be determined by determining the
best approximation on every n -+ 1 point subset Yof Wand at the same time
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determining p( Y). The best approximation on the Y maximizing p is the best
approximation on W. This is an infallible but impractical method: It is
impractical because the number of n + 1 point subsets is usually astronom­
ical. Reflection shows that all we need is a sequence of n + 1 point sets X k

such that p(Xk ) is an increasing sequence. This suggests use of a generalization
of Stiefel's ascent method for linear approximation [1, pp. 46-47; 5, pp.
173-176].

THE ASCENT METHOD

(i) Choose an initial set Xoof n + I points from S(W) and set k = O.

(ii) Determine a best parameter AO to f on X o and p(Xo).

(iii) Find Yk such that I!(Yk) - F(Ak, Yk)[ == e(Ak).

(iv) If p(Xk) = e(Ak), stop.

(v) Find an n + 1 point subset Xk+1 of Yk u Xk such that p(Xk+1) >
p(Xk), together with Ak+1 best on X k+1 .

(vi) Add 1 to k and go to (iii).

When we stop on (iv), we have a best approximation. When applied to
finite W, the algorithm (if it runs) must eventually stop on (iv) since only
finitely many n + 1 point subsets exist. It should be noted, however, that
even in the linear case, we cannot always guarantee that step (v) can be done
if step (iv) is passed [5, p. 256]. We need further assumptions to ensure this.

LEMMA. If there exists a unique best approximation to f on X k and step (iv)
ofthe ascent method is passed, there exists X k +1 as requiredfor step (v).

Proof In view of the preceding theorem it suffices to show that p(Xk U

Yk) > p(Xk). Since X k C Xk U Yk , we have p(Xk U Yk) ~ p(Xk). Thus we need
only consider the possibility that p(Xk U Yk) = p(Xk ). If this is so, there
exists A best on X k with

But the best approximation on X k is unique, so this implies that we stop on
step (iv).

THEOREM 5. Let there exist a best approximation to f on all n + 1 point
subsets offinite W. Let c/> be an order function and {lfil '00" lfin} be a Chebyshev
set on S(W). Then the ascent method converges to the unique best approximation
on X in afinite number of iterations.

We consider how X k +1 is to be found. X k +1 is obtained by replacing a
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suitable element of X" by Ylc . In the linear case with a Chebyshev set, Stiefel
has found an exchange rule giving a suitable point to drop. Sufficient condi­
tions are given in the next section for Stiefel's exchange to give such a point.
In the absence of such a rule, we must determine best approximations on
n + 1 point subsets of X" u Ylc until one with a deviation p larger than p(X1.)

is found.
We may wish to run the ascent method on a set Won which {!f;l ,... , ~JnJ is

not a Chebyshev set. No trouble will occur if we do not hit a set X" on which
the Chebyshev set condition fails. Suppose that the Chebyshev set condition
is satisfied on every n + I point maximum of p, then there is M < p( W)
such that if Y has n + I points and p( Y) > M, the Chebyshev set condition
is satisfied on Y. If we then start the ascent method on a finite set W with
such a Y, we get certain convergence.

STIEFEL'S EXCHANGE

Let ep be an order function. Let X = {xo ,... , x,,} be a subset of S( W),
F(A,') be best on X, Il(x"+l) - F(A, X,,+l)] > p(X), and {!f;l ,... , !f;,,} be a
Chebyshev set on X U X"+l' The Chebyshev set hypothesis guarantees
uniqueness ofF(A, .) and by arguments used to guarantee uniqueness,

Ilex;) - F(A, xi)1 = p(X) i = 0, ... , n.

To implement a one-for-one exchange algorithm, we would like an n + I
point subset Y of X U XI/+l such that p(Y) > p(X). Such a subset Y
is obtained by discarding a suitable element Xj of X and replacing it by X"ll .
A procedure which accomplishes this in the case of linear approximation is
the exchange procedure of Stiefel (Cheney [I, p. 46], Rice [4, p. 175]). From
the summary of Cheney [I, p. 46], it is clear that Stiefel's exchange can be
applied to transformed linear approximation (we use the linear family to
which the transformation is applied).

THEOREM 6. Let ep be an order function. Let X = {xo , ... , xn}, peA, .) be
best on X, Il(xn+l) - F(A, X,,+l)! > p(X), and {!f;l"'" l/Jn}bea Chebyshev set on
Xu {xn+l}' Let there exist a best approximation to f on all n + I point
subsets ofXu xn+l . The n + I point set Y produced by Stiefel's exchange has
the property that p(Y) > p(X).

Proof. The argument is similar to that of Cheney [1, p. 47]. Let Xj be the
point discarded by Stiefel's exchange and Y = (X "-' Xj) U X"+l . Let F(B, .)
be best on Y with deviation p(Y). By the Chebyshev set hypothesis F(B, .) is
unique and by arguments used to guarantee uniqueness

Il(x;) - F(B, Xi)] = p(Y) i = 0, ... , n + I, i oF j.
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Let Xi EX,....., Xi , then

II(xi) - F(A, Xi)! = p(X) I/(Xn+1) - F(A, Xn+1) I > p(X),

II (Xi) - F(B, Xi)[ = p(Y) I/(xn +1) - F(B, Xn +1)! = p(Y),

167

so A =1= B. By the characterization theorem, °is in the convex hull of ai
tP(Xi)' i = 0,..., n, where ai = sgn((f(xi) - F(A, Xi))/W(Xi)), hence by the
exchange theorem [1, p. 45], °is in the convex hull of

{aitP(Xi) : i = 0, ... , n + 1, i =1= j}.

It follows from the characterization theorem that either

(0)

sgn(f(xi) - F(B, xil) = ai

or

sgn(f(Xi) - F(B, Xi)) = -ai

We must, therefore, have

I(xi) - F(B, Xi) = aie

From the previous discussion, we have

i = 0,00" n + 1, i "-1= j,

i = 0,... , n + 1, i =1= j.

i = 0, ... , n + 1, i 0,-1= j. (1)

f(Xi) - F(A, Xi) = aiP(X), i = 0,... , n,

f(x n+1) - F(A, Xn+1) > an+1p(X),

Subtracting (1) from (2), we get

(2)

F(B, Xi) - F(A, Xi) = ai(p(X) - e)

> an+1(p(X) - e)

If p(X) = e, then (3) implies

F(B, Xi) - F(A, Xi) = 0,

L(A, xil - L(B, Xi) = L(A - B, Xi) = 0,

i = 0, ... , n, i =l=j

i=n+1.

i = 0, ... , n, i =1= j,

(3)

and by the Chebyshev set assumption, A = B. But we have already proved
that A =1= B, so this is impossible. Next let e < p(X), then

ai(F(B, Xi) - F(A, xil) > ° i = 0,... , n + 1, i 0,-1= j.

Assume without loss of generality that 1> is strictly increasing, then

aiL(B - A, Xi) > ° i = 0, ... , n + 1, i =1= j.
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By the theorem on linear inequalities [1, p. 19], this implies that °is not in
the convex hull of (0), contrary to what we have shown.

DISCRETIZATION

DEFINITION. Let Xl' X 2 , ••• , be a sequence of closed subsets of W. We
say {Xk} ---+ W if for any x E W, there is a sequence {Xk} ---+ x, Xk E Xk .

THEOREM 7. Let I ep(t)1 ---+ 00 as I t I ---+ 00. Let {o/l ,... , !fn} be independent
on Xl . Let Xl C X 2 C··· and {Xk} ---+ W. Let Ak be best to f on X k . Then {Ak}
has an accumulation point and any accumulation point of{Ak} is best on W.

This follows by arguments similar to those of [2].
This theorem suggests that best approximations on infinite sets be deter­

mined as a limit of best approximations on finite sets. For example, if
W= [0,1] X [0,1], we could let Yk = {a, i"', ... , 1 - i"', I}, Xk = Yk X Yk •
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